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FOFUMORD 

T h i s  i s  the f i rs t  of three volumes of a f i n a l   r e p o r t   e n t i t l e d  

"Buckling  of  Shells of Revolution  with  Various Wall Constructions". The 

th ree  volumes  have the   fo l lowing   t i t l e s :  

Vol. 1 Numerical  Results 

Vol. 2 Basic  Equations  and Method of  Solution 

Vol . 3 User '6 Manual f o r  BdSflR 

The work descr ibed   in   these  volumes was carried  out  under  Contract NAS 1-6073 

with  the  National  Aeronautics  and  Space  Administration. 
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ABSTRACT 

Volume 1 

Volume 1 presen t s   t he   r e su l t s  of a parameter  study  performed  with the 

computer  program BfiSbR (Buckling - - -  O f  She l l s  of - Revolution) which i s  described 

i n  Volume 3. The axisymmetric  collapse  and  the nonsymmetric b i fu rca t ion  

buckling  behavior i s  s tudied for cylinders,  cones,  and  spherical and to ro ida l  

s h e l l   s e p e n t s   s u b j e c t e d   t o   a x i a l  compressive  loads.  Particular emphasia i s  

placed on the e f f e c t s  of eccen t r i c i ty  in load  appl icat ion and on the  

inf luence of e l a s t i c  end r ings .  

Volume 2 

Volume 2 presents   the  equat ions on  which the computer  program B&$R is 

based, as well as the method of solution  of  the  equations.  In addi t ion,  a 

set  of more genera l   s tab i l i ty   equa t ions  i s  g iven   in  an appendix. 

Volume 3 

Volume 3 presents  a comprehensive  computer  program (B6SfiR) f o r   t h e  

ana lys i s  of shells of revolution wi th  axisymmetric  loading. The program 

includes  nonl inear   prebuckl ing  effects  and i s  very  general   wi th   respect   to  

geometry of meridian, shel l  wall design,  edge  conditions,  and  loading.  Despite 

i t s  gene ra l i t y   t he  program is easy   t o   u se .  Branches are provided  such tha t  

f o r  commonly occurring  cases  the  input  data  involves  only  basic  information 

such as geometrical  and material proper t ies .  The computer  program has 

been ve r i f i ed   by  comparisons  with  other known so lu t ions .  The cards and a 

computer l i s t i n g  for t h i s  program are ava i lab le  from COSMIC, University of 

Georgia,  Athens,  Georgia, 30601. 
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r e f e r s   t o  "A", "B" ends  of shel l   meridian  (see  Fig.  1) 

value of N due t o   u n i t   a x i a l   s t r a i n  1 

load  eccentr ic i ty   (see  Fig.  1) 

bending stiffness of  edge r ing   about   ax is   in   the   p lane  of the   r ing  

t o r s i o n a l   s t i f f n e s s  of edge r ing  

meridional  bending moment 

mer id iona l   s t ress   resu l tan t  

c i rcumferent ia l  waves in   buckle   pa t te rn  

t o t a l   a x i a l   l o a d  

radius of  edge r ing  

s h e l l  wall displacement 

c i rcumferent ia l  shel l  wall displacement 

n o m 1   d i s p l a c e m n t  component in   buckl ing  mode 

meridional   rotat ion 

Subscr ipts  

c r   c r i t i c a l   v a l u e  of the load 

H i n   h o r i z o n t a l   ( r a d i a l )   d i r e c t i o n  

v i n   v e r t i c a l   ( a x i a l )   d i r e c t i o n  

0 prebuckling  quantity 

1 meridional   direct ion 

2 c i rcumferent ia l   d i rec t ion  

v i  i 
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Section 1 

INTRODUCTION 

A few years   ago   researchers   in   the   f ie ld   o f   she l l   s tab i l i ty   ana lys i s  had 

t o  be content   with  an  analysis  of highly  ideal ized  s t ructures .  I n  general   only 

i so t ropic   cy l indr ica l   o r   spher ica l   she l l s  were considered,  and it  was assumed 

tha t   t he  membrane solution  presented a sufficiently  accurate  approximation 

of the  prebuckl ing  s ta te   of   s t ress .  In addi t ion  the boundary conditions were 

usua l ly   s impl i f ied .  The increas ing   e f f ic iency  of t h e   d i g i t a l  computer  has 

rap id ly  changed t h i s   s i t u a t i o n .  For a wide c l a s s  of s h e l l s  it i s  now possible  

t o  perform stabi l i ty   analyses   without   unduly  res t r ic t ive  approximations.  

For  axisymmetrically  loaded  shells  of  revolution  the  governing  partial  

different ia l   equat ions  can be  reduced to   o rd inary   d i f fe ren t ia l   equa t ions   th rough 

separat ion  of   var iables .  An additional  requirement  for  separation of var iab les  

i s  that the  shel l   exhibi ts   "or thotropic   behavior" .  T h a t  is, in   the   p rebuckl ing  

state axisymmetrical  loads  produce  axisymmetrical  displacements. By use 

of   the   numer ica l   in tegra t ion ,   f in i te   d i f fe rence lor   f in i te   e lement   t echniques  , 

it i s  now p r a c t i c a l   t o   s o l v e  with reasonable  accuracy  almost  any  buckling 

problem for   the   type  of shells  discussed  above. It i s , fo r   i n s t ance ,   ea sy  

to   Include  in   the  buckl ing  equat ions  prebuckl ing  quant i t ies  as they  

are   obtained from a nonl inear   analysis .  While nonlinear  equations were 

1 



used  for  instance  by  Weinitschke  (Ref.  1)and  Budiansky  (Ref.  2)for  the 

symmetrical  snapping  of  spherical  caps,  the  influence of the  prebuckling 

displacements on bifurcat ion  buckl ing was f i r s t  recognized  by  Stein  (Ref.  3)fOr 

c y l i n d r i c a l   s h e l l s  and by Huang (Ref. 4)for   spherical   caps.  I n  cases  such 

as tha t   t r ea t ed   by  Stuhlman, e t  a1 i n  Ref. 5 with edge moments introducing 

hoop s t r e s s e s   i n   t h e   s h e l l ,  it i s  imperative that an  accurate  prebuckling 

analysis  be  used.  Other  than  cylindrical  o r  sphe r i ca l   she l l s  have been 

considered  by  Sobel  and FlItgge  (Ref. 6 ) ,  Bushnell (Refs. 7, 8) and by Cohen 

( R e f .  9 )  and  others 
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Section 2 

C O M P W R  PROGRAM 

In   the   p resent   inves t iga t ion ,  a computer  program (BJdSJdR) has  been 

der ived   for   the   e las t ic   buckl ing   of   she l l s  of revolution. A complete 

descr ip t ion  of t h i s  computer  program is given i n  Volume 3 ("User's Manual 

f o r  BJdSfiR). The program can calculate  axisymmetrical  collapse  loads as wel l  

as b i furca t ion   buckl ing   loads ,   the   l a t te r  with e i t h e r  a membrane so lu t ion   or   an  

accura te   nonl inear   so lu t ion   for  the prebuckling  displacements. The program 

i s  easy   to   use   bu t  s t i l l  general  wi th  respec t   to  

1. geometry  of  meridian 

2.  type of wall construction 

3. type of boundary  conditions 

4 .  type of loading 

These object ives  have  been achieved  through  provision of program branches  with 

m i n i m   i n p u t   i n   a d d i t i o n   t o  t h e  branch   for  t h e  most general   case.  

For  the geometry  of the  meridian  the  general   branch of the  computer 

program c a l l s   f o r   i n p u t   i n  the form of  Cartesian  coordinates f o r  a number of 

points   a long the meridian.  Special  branches are provided  for   cyl indrical ,  

conica l ,   spher ica l ,  and to ro ida l   she l l s .  

The general   branch  for   the  shel l  wall s t i f f n e s s   d a t a   c a l l s   f o r   i n p u t   i n  

the  form. of coe f f i c i en t s  of the  const i tut ive  equat ions.   Special   branches 
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ca l l i ng   fo r   s imp le r   i npu t   da t a  are provided  for  

1. she l l s   w i th   r i ng  and s t r i n g e r   s t i f f e n i n g  

2. shells with skew s t i f f e n e r s  

3. f i be r   r e in fo rced   ( l aye red )   she l l s  

4.  l aye red   she l l s   ( i so t rop ic   o r   o r tho t rop ic )  

5 .  corrugated   r ing   s t i f fened   she l l s  

6.  s h e l l s  with one corrugated  and one smooth skin  (with  r ings)  

The s t i f f n e s s   c o e f f i c i e n t s  must  be constant  along t h e  meridian. 

The most general  form  of the boundary condi t ions  for   the  prebuckl ing 

ana lys i s  i s  a s e t  of  four nonhomogeneousequations containing  twenty  coefficients.  

For t h e   s t a b i l i t y   a n a l y s i s ,  t h e  homogeneous boundary condi t ions  consis t  of 

e ight   equat ions  with  s ixty-four   coeff ic ients .  The general  branch  of  the 

computer  program c a l l s   f o r  a l l  these   coef f ic ien ts  as input.  Several  branches 

are  provided, however,  through  which the  boundary  conditions  are  calculated 

i n t e r n a l l y  w i t h  only  control   in tegers   required as input .  These  branches 

include  force  or  displacement boundary condi t ions,   support   by  e las t ic  edge 

r ings,  or support   by  an  e las t ic  medium.  The shell   can  be open o r  closed 

a t  the  apex. 

The fol lowing  types  of   axial ly  symmetric loading  conditions are 

considered 

1. uniform  normal  pressure 

2. ax ia l   l i ne   l oads  a t  ends  of s h e l l  

3. combination  of  uniform normal pressure and ax ia l   l i ne   l oads  
(which  vary  proportionally as the  load I s  Increased) 

The ax ia l   l oad  need not   be  appl ied a t  the   neut ra l   sur face  of t h e   s h e l l  . 
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The coef f ic ien ts  of the  const i tut ive  equat ions and more d e t a i l s  on the  

boundary  conditions are given i n  Volume 2 of this repor t .  

As formulated i n   t h e  computer  program the   ana lys i s  has two p a r t s :  I n  

t he  first pa r t   t he  two equations  governing  the  prebuckling  state  of  the shel l  are 

solved.  These  are  nonlinear, nonhomogeneous, second-order  ordinary 

d i f f e ren t i a l   equa t ions .  They were or iginal ly   der ived  by  Reissner   (Ref .  10). 

"he Newton-Raphson procedure i s  used  to   solve the set  of  nonlinear  algebraic 

equations  which  result from a f ini te-difference  analog of t he   d i f f e ren t i a l  

equations.  The so lu t ion  of the equations  governing the prebuckled  equilibrium 

state yields the  prebuckling  meridional  rotation and  meridional  and 

c i rcumferent ia l   s t ress   resu l tan ts .  These quant i t ies   appear  as known variable  

coef f ic ien ts   in   the   equat ions   govern ing   the   s tab i l i ty   o f   the   equi l ibr ium  s ta te .  

In the  second  part of the   ana lys i s   the   s tab i l i ty   equa t ions  (Donne11 type 

formulation)  are  solved.  There are two l i n e a r ,  homogeneous, fourth-order, 

par t ia l   d i f fe ren t ia l   equa t ions   for   each  mesh point .  Dependence on the 

circumferential   coordinate  can  be  eliminated as the  dependent  variables  are 

harmonic. The resu l t ing   o rd inary   d i f fe ren t ia l   equa t ions   a re   so lved   by   the  

method  of f i n i t e -d i f f e rences .  The s t a b i l i t y   a n a l y s i s  i s  f o m l t e d  as an 

eigenvalue  problem w i t h  the  lowest   e igenvalue  of   the  s tabi l i ty   equat ions 

cor responding   to   the   c r i t i ca l   load .  The prebuckling and s tab i l i ty   equa t ions  

are given i n  Volume 2. 

The computer  program has been  used for the s t a b i l i t y   a n a l y s i s  of 

eccentr ical ly   s t i f fened  cyl inders ,   conical   f rustrums,  and spher ica l  and 
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toroidal segments. Comparisons have been made with  the  tes t   resul ts  of 

Refs. 5 and 11 through 16. 
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Section 3 
NUMERICAL RFSULTS 

The computer  program discussed above has been verified  through  comparison 

to   p rev ious ly  known analytical   or  numerical   solutions.  It has been  applied 

also t o  a number of cases   fo r  which experimental   analyses   are   avai lable .  Some 

important  points are revealed  through  comparison of t heo re t i ca l  and 

experimental   resul ts .   In   addi t ion  cer ta in   special   effects  have  been s tudied 

fo r   s t i f f ened   cy l ind r i ca l ,   con ica l ,   sphe r i ca l  and to ro ida l   she l l s .  The 

parameter  study has been  concerned  with the type of shel l  specimens  which i s  

considered  in   Ref .  5 .  The geometry for the   d i f fe ren t  shells inves t iga ted  

I s  shown i n   F i g .  1. 

The accuracy in   t he   numer i ca l   r e su l t s  depends on the  number of  points i n  

t h e   f i n i t e   d i f f e r e n c e  mesh. Due t o  computer s torage   l imi ta t ions  this number 

i s  not  allowed t o  exceed 100. T h i s  appears   to  be s u f f i c i e n t   f o r  most p r a c t i c a l  

applications.  Another  complication i s  t h a t  with a l a rge  number of  points 

numer i ca l   d i f f i cu l t i e s  may arise. Introduction of  double  precision programming 

t o  overcome these d i f f i c u l t i e s  would  have t o  be  compensated by a r e s t r i c t i o n  

i n  the number of mesh poin ts  and thus would severely limit the  scope  of  the 

program. I n  a typ ica l   case ,  as the  .number of points  i s  increased, the 

corresponding  cr i t ical   load  appears   to   approach a c e r t a i n   l i m i t ;   f u r t h e r  
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increase  may r e s u l t  i n  somewhat e r r a t i c   va lues  of t h e   c r i t i c a l   l o a d .  

Typical  examples  are shown in   Tables  l a  and l b .  The r e s u l t s  of Table l b   a r e  

p lo t t ed  In  Fig.  2. For   shor t   she l l s   numer ica l   d i f f icu l t ies   genera l ly   occur  

a t  a lower  value  of  the number of points .  However, in these  cases  fewer 

po in t s   a r e  needed.  For  cases i n  which the length  of   the  shel ls  shown i n  

Fig.  1 i s  increased  by a f a c t o r  of  four, no numerical   d i f f icul t ies   occur  

a t  o r  below the  maximum number of points .  Due t o  this fo r tuna te   s t a t e  of 

a f f a i r s  it has been  possible   to   obtain  qui te   accurate   resul ts   in   a lmost  a l l  

c a s e s   f o r  which a so lu t ion  has been  a t tempted.   Except ions  to   this   are   shel ls  

wi th   f ree   edges   o r  weak end  r ings,   for  which the  buckl ing  pat tern i s  almost 

inextensional .  

3.1 Comparison to   OtheyTheore t ica l  ~" Analyses 

For monocoque cylinders  under  hydrostatic  pressure,   the  buckling  loads 

obtained  are  i n  complete  agreement  with  those  given  by  Sobel  (Ref. 17) .  

For monocoque cylinders  under  axial  compression a comparison was  made with 

t h e   r e s u l t s  of  Ref. 18. For   shel ls   wi th L/R = 0.7 and R / t  = 100 and the  

boundary  conditions SI, S4, and C 2  (in the  notations  of  Ref. is), the  

normalized c r i t i ca l   loads   a re   0 .869 ,   0 .506 ,  and  0.858. The corresponding  results 

presented  in   Ref .  18 are  0.876, O.5C8, and  0.863. The d i f fe rence   ( less  

than one percent)  i s  probably due to   t he   u se  of a l a r g e r  number of mesh poin ts  

and  double  precision  ari thmetic  in  Ref.  18. In Ref. 5 buckling  loads  are 

given fer the  type of cy l ind r i ca l   she l l s  shown i n   F i g .  1. Corresponding 

r e su l t s   fo r   cy l inde r s  95 inches  long were  computed with  the  present  program 

8 



and the agreement i s  reasonably good. The r e s u l t s  of R e f .  5 a r e  somewhat 

higher (UP t o  1%) which  could well be due t o   t h e   f a c t  that it i s  based on a 

One term Galerk in   so lu t ion .   Cr i t ica l   loads  were computed a l s o   f o r  

spher ica l   she l l   sewents   under   t ens ion .  The r e s u l t s  were compared t o  the  

theo re t i ca l   r e su l t s   p re sen ted   by  Yao i n  Ref. 19. The present   resu l t s  were 

& 3$ lower  than  those  obtained  by Yao. For  comparison  with  results 

p re sen ted   i n  R e f .  20 the c r i t i c a l   l o a d  was a l s o  computed f o r  two simply- 

supportecf  toroidal  segments.  For a segment with  positive  Gaussian  curvature 

and   ex terna l   s t i f feners ,   the   c r i t i ca l   t ens ion   load   accord ing   to  R e f .  20 ( i n  

which l i n e a r  membrane prebuckling  theory i s  used) i s  17788 lbs / in .  a t  the  equaFor. 

If a membrane prebuckling  analysis i s  used fo r   t he  same segment the  present 

program gives 17745 lbs / in  and with the more accurate  nonlinear  prebuckling 

ana lys i s  a c r i t i ca l   t ens ion   l oad  of 18383 lbs / in  i s  obtained. The agreement 

between the two analyses i s  good, and the  influence of non l inea r i ty   i n  t h e  

prebuckling  analysis i s  r a the r  small. For a toro ida l  segment with negative 

Gaussian  curvature, R e f .  20 gives  a c r i t i c a l  compression  load  of 1913 l b s / i n .  

The present   analysis   gives   1690  lbs/ in  with membrane prebuckling  analysis  and 

1686 l b s / i n  with nonlinear  prebuckling  theory. 

3.2 Comparison t o  Test  Results 

Results  from  the  present  analysis compare w e l l   t o  test  r e s u l t s   f o r   c y l i n d e r s  

of 95 inch  length  loaded  through the center  of the skin  (Ref. 5 ) .  Three 

all Simple-support"  implies N1 = M1 = u = v = 0 H 
"Clamped" implies % = p = v = yr = o  
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separate  tes ts  gave buckling  loads of 3440, 3550, and 3650 lbs/ in ,   whi le  

the  computer  program indica tes  a c r i t i c a l   l o a d  of 3505 lbs / in .  

A l a rge  number of   s t i f fened   cy l inders  were t e s t e d  by  Milligan e t  al,  

R e f .  11. They a l so   ca lcu la ted  the c r i t i c a l   l o a d  and  concluded t h a t   f o r  

s t i f fened   cy l inders ,   theory  and  experiment a r e   i n  agreement. The r a t i o  between 

experimental and theore t ica l   loads   var ies   accord ing   to   Ref .  11 from .81 t o  

1.28. One of the  reasons  for   the  surpr is ingly  high  values  of this r a t i o  i s  

that the   t heo re t i ca l   ana lys i s   unde res t ima tes   t he   s t i f fnes s  of  the shell  wall. 

The assumption i s  made that t h e   s t i f f e n e r s  do not   contr ibute   to   the  bending  or  

extensional   s t i f fness   perpendicular  t o  t h e   s t i f f e n e r   d i r e c t i o n .  Also i n  some 

cases  the  assumption of s imple   suppor t   resu l t s   in   theore t ica l   va lues  which 

a re   too  low. The present  computer  program was used t o   c a l c u l a t e   t h e   c r i t i c a l  

loads   for  some of the   cy l inders   for  which t e s t   r e su l t s   a r e   r epor t ed   i n   Re f .  11. 

The theo re t i ca l  and the  experimental  loads of Ref. 11, as wel l  as the  loads 

from the  present program, are given i n  Table 2. With membrane prebuckling 

analysis ,   resul ts   are   given  both  for   s imply-supported and f o r  clamped 

cyl inders .   Resul ts  w i t h  nonlinear  prebuckling  analysis  are  given only f o r  

clamped s h e l l s .  The she l l s   t e s t ed   by   Mi l l i gan ,   e t  a1 (Ref. 11) had r a the r  

ins igni f icant   s t i f fen ing .   Therefore ,  it appears  that   their   behavior  should 

not   be  too  different  from tha t  of monocoque s h e l l s .  It i s  not iced   tha t   the  

r e l a t ion  between r e s u l t s  from the  present   theory and  from the tests of Ref. 11 

i s  i n  accordance  with  the  experience  for monocoque s h e l l s .  

In Table 3 theore t ica l   loads  fo r  some f i b e r  wound cyl inders  are compared 

t o  experimental   loads  reported  in  Refs.  12, 13, and 14. Result6 obtained  with 
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membrane ana lys i s   a r e  shown both for cylinders  with  simply  supported  and  with 

clamped ends.   With  the  nonlinear  prebuckling  analysis  cri t ical   loads were 

ob ta ined   fo r  clamped s h e l l s .  It can  be  seen  that  the  influence of nonl inear i ty  

in the   prebuckl ing  analysisard  the  inf luence of ro t a t iona l  edge r e s t r a i n t  

t end   t o   cance l  one another.  The expe r imen ta l   r e su l t s   fo r   f a i r ly   t h i ck   cy l inde r s  

were not  included  in  the  comparison. It appears  that   buckling  of  thick 

cyl inders  i s  prec ip i ta ted   by  a shear   fa i lure   in   the   mat r ix .  With one 

exception  experimental  results  range  between 62 and 85 percent of t he   t heo re t i ca l  

r e s u l t s .  

Card  and Jones ( R e f .  1 5 )  t e s t ed   s t r i nge r   s t i f f ened   cy l inde r s   w i th  wall 

thickness  such that agreement  between t e s t  and theory i s  t o  be  expected. For 

cyl inder  No. 3 i n  Ref. 15 ,  the present program gives  for  simple  support 

edge Condi t ions   c r i t i ca l   loads  of 1378 lbs/ in   with membrane prebuckling  analysis 

and 1451 lbs/in  with  nonlinear  prebuckling  analysis.  If the  cyl inder  i s  

considered clamped the  corresponding  buckling  loads  are 2657 lbs / in  and 

2644 lbs / in .   Fo r   t he   t e s t  specimen the edge conditions were probably 

reasonably  Close t o  complete  clamping. The cylinder  buckled a t  2120 l b s / i n .  

For ring  st iffened  conical  shells  under  axial   compression some t e s t  

resu l t s   a re   g iven   in   Ref .  16, together  with  an  approximate  formula  for  the 

c r i t i c a l   l o a d .  For the  specimens  designated 3-3 and 3 - 3  in   Ref . .16 ,   the  

c r i t i c a l   a x i a l   l o a d   a c c o r d i n g   t o   t h e   f o r m u l a  i s  7510 kg.  According t o   t h e  

present   theory   ax ia l ly  symmetric buckling i s  c r i t i c a l .  Buckling  loads  for  the 

two specimens a r e  6480 kg and 7100 kg respect ively.  The experimental 

r e s u l t s   a r e  5800 kg and 6000 kg. 

11 
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3 - 3  Effect  of Load Eccen t r i c i ty  

The e f f e c t  of eccen t r i c i ty   i n   t he   l oad   app l i ca t ion  was s t u d i e d   f o r   s h e l l s  

s x h  as those shown i n   F i g .  1. Resul t s   for   cy l indr ica l  and conica l   she l l s  are 

shown i n  Table 4. C r i t i c a l   a x i a l   l o a d s  were  computed f o r   t h e   c a s e s   i n  which 

t h e   s h e l l s  are simply  supported a t  the  midsurface  of the skin,  a t  the 

neutral   surface  of  the  cross-sect ion and a t  t h e  midpoint of t h e  rectangular  

s t i f f e n e r s .  Clamped s h e l l s  were also  considered.  For  each  type of loading 

c r i t i c a l   l o a d s  were obtained  both  for shells with  external  and wi th   in te rna l  

s t i f f e n i n g .  The ana lys i s  i s  based on a f in i t e   d i f f e rence  mesh s i ze   equa l   t o  

1/50 of   the  shel l   length.  

For  comparison, c r i t i c a l   l o a d s   a r e  shown also as computed by  use  of 

the  membrane ana lys i s .  With a membrane prebuckling  analysis and in  the  absence 

of a x i a l   r e s t r a i n t   t h e r e  i s  no load ing   eccen t r i c i ty   e f f ec t .  The r e su l t s  from 

the  f i rs t  three   loading   cases   a re   ident ica l .  

It may be  seen  from  Table 4 t ha t  t he   e f f ec t  of t h e  cone angle i s  small. 

On the   other  hand,  changes i n  the   loading   eccent r ic i ty  have d r a s t i c   e f f e c t s  

on the   c r i t i ca l   l oad .   Fo r   t he   ca se   i n  which the s h e l l  is  loaded  through i t s  

neu t r a l   su r f aces   fo r  example, it i s  i n t e r e s t i n g   t o  compare resul ts   obtained  with 

membrane prebuckl ing  analysis   to   those  obtained wi th  nonlinear  prebuckling 

ana lys i s .  The difference  here i s  due to   the  Poisson  expansion  in  

connection  with radial r e s t r a i n t  a t  the  edges. This effect  i s  surpr i s ing ly  

la rge ,   par t icu lar ly   for   she l l s   wi th   ou ts ide   s t i f fen ing .  

12 



For  shel ls   wi th end moments i t  i s  easy   to   see  t h a t  the presence of a 

moment which t e n d s   t o  bend the   cy l inder   in to  a b a r r e l  shape grea t ly   increases  

the c r i t i c a l   l o a d .  A moment i n  the other  direction,  developing  prebuckling 

compressive hoop stresses, has the  opposite  effect.  Prebuckling  displacements 

b I 0 )  
and  buckling modes (w) a r e  shown fo r   cy l inde r s   w i th   i n s ide   s t i f f en ing  

i n   F i g s .  3 and 4 .  Fig.  3 corresponds  to   loading  through  the  neutral   surface 

and  Fig. 4 to   loading   th rough  the   cen ter   o f   the   s t i f feners .   F ig .  5 shows 

prebuckling  displacements and buckling modes fo r   con ica l   she l l s  which are 

e i t h e r  clamped or simply  supported  and  loaded  through the  center  of the  skin.  

For the cy l ind r i ca l  and conical   shel ls ,   b i furcat ion  occurs  a t  loads 

which a r e  .mall f rac t ions  of the  loads a t  which  axisymmetrical  collapse would 

occur .   For   axial ly  compressed spherical  and to ro ida l  segments,  such as 

shown i n   F i g .  1, bifurcat ion  buckl ing  usual ly   occurs   c lose t o  t h e  col lapse 

loads.  The prebuckling  displacements are then  very  large.  

Table 5 gives  buckl ing  loads  for   axial ly  compressed, eccen t r i ca l ly  

s t i f fened   spher ica l   and   to ro ida l  segments  (See Fig.  1). Two loads  are  given 

for   each  case,  a load  corresponding  to   bifurcat ion  buckl ing  (n  # 0)  and a 

load  corresponding  to  axisymmetric  collapse (n = 0) .  The spherical  and to ro ida l  

segments wi th  external  st iffeners  buckle  nonsymmetrically a t  lower  loads  than  those 

wi th  i n t e r n a l   s t i f f e n e r s .   E c c e n t r i c a l l y   s t i f f e n e d   c y l i n d r i c a l  and conical  

she l l s   exhib i t   the   oppos i te   behavior .  Th i s  i s  not  so surpr i s ing   s ince  non- 

symmetric buckling  occurs a t  loads which a r e   c l o s e   t o  the axisymmetric 

col lapse  load.  The collapse  load i s  found t o  be   h igher   for  shells with 

i n s i d e   s t i f f e n e r s .  The c r i t i c a l  wave  number f o r   t o r o i d a l  segments i s  higher 
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tkmn t h a t   f o r   s p h e r i c a l  segments. In  the  case  of a to ro ida l  segment with  the 

load  applied  through  the  center  of the outs ide   s t i f feners ,   the   resu l t ing  

meridional  end moments cause  considerable hoop compression  near  the  edges. The 

c r i t i c a l  wave number (65) i n  this case,  i s  f a r  above the  others  because 

buckling i s  pr imar i ly  due t o  this hoop compression.  Similar hoop s t r e s ses  

occur   fo r   sphe r i ca l   she l l s  and a l so   fo r   she l l s   w i th   i n s ide   s t i f f en ing   l oaded  

through the center  of the skin.   In   these  cases ,  however, the  buckling  load 

corresponding t o   c r i t i c a l   a x i a l  compression i s  s t i l l  lower. 

Figure 6 gives a prebuckling  load-deflection  curve  for a spherical  segment 

w i t h  i n t e r n a l   s t i f f e n e r s .  The load i s  applied a t  the  middle  surface of the skin 

( shear   cen ter ) .  This  f i g u r e   i l l u s t r a t e s   t h e  method i n  which a col lapse  load 

i s  calcu.lated. The axisymmetric  prebuckling  displacements  and  stresses are 

f i r s t   c a l c u l a t e d   f o r  P/mC,, = 0 . 3 .  The load i s  increased  in  increments 

of P/2rrC11 = 0.1 u n t i l  a t  P/2rrC11 = 0.7 the Newton-Raphson process fails  t o  

converge. The step s i z e  i s  then  decreased and P/*C se t   equa l   t o  0.6 

plus   the new increment. A t  P/26,, = 0.82 the  prebuckling  solution  again 
11 

f a i l s  t o  converge,  and  the  step  size i s  again  decreased.  Calculations 

con t inue   i n   t h i s  manner u n t i l   t h e   s t e p   s i z e  i s  smaller  than some pre- 

ass igned   va lue   ( in   th i s   case  .001 of t h e   i n i t i a l   s t e p   s i z e )  a t  which point  

they  terminate.  The s h e l l  is judged t o  have collapsed  axisymmetrically a t  

the  highest   value of the   load   for  which a solut ion was obtained. 

With too  large an i n i t i a l   s t e p   s i z e  i t  i s  p o s s i b l e   t o  jump over a col lapse 

load and f ind  solut ions  to   the  prebuckl ing  equat ions on another  branch 

which may or  may not  represent  unstable  equilibrium. Such an  upper  branch 

14 



if3 shown i n  Fig.  6. The s ign  of t he   s t ab i l i t y   de t e rminan t   fo r  n = 0 general ly  

changes  from one branch  to   another ,   but   the   s tabi l i ty   determinant   for  n # 0 

does not necessar i ly  change sign. When ca lcu la t ing   buckl ing   loads   for  n # 0 , 

one  must make t h e   i n i t i a l   s t e p  s ize  small enough t o  guarantee that a col lapse 

load i s  not  bypassed in   t he   s ea rch   fo r   t he   l owes t   b i fu rca t ion   l oad .  

Figure 7 shows a prebuckling  load-deflection  curve  for a spher ica l  

segment wi th   ex te rna l   s t i f f ene r s ,   w i th   t he   l oad   app l i ed   t hmugh   t he   cen t ro id  

of  the s t i f feners .  Two branches  are shown, and  the 

associated  with  each  branch are indicated.  

Ffgure 8 gives  displacements  corresponding  to 

load-def lec t ion   curve   p lo t ted   in   F ig .  6 . Collapse 

The upper  branch  (dotted  l ines)  represents  unstable 

def lec t ion   pa t te rns  u ( s )  
Ho 

the two branches  of  the 

occurs a t  P/2rrcl1 = 0.814. 

equilibrium,  since an 

increase  in   load  corresponds  to  a decrease  in  displacement. 

Figure 9 shows the  buckling mode fo r   t he   she l l  , f o r  which the  pre-  

buckling  behavior i s  shown in Figs.  6 and 8 . The shell buckles   in to  8 

waves a t  a load  about 2% below the  collapse  load  (See  Table 5 ) .  

Figures 19 and 11 show the  prebuckling  displacements  and  buckling mode 

shape f o r  a clamped s p h e r i c a l   s e p e n t   w i t h   i n t e r n a l   s t i f f e n e r s .  It i s  noted 

tha t   aga in   t he re   a r e  two branches of the  prebuckling  load-deflection  curve.  

The she l l   co l lapses  a t  P/mC,, = 1.05, but  solutions  of  the  prebuckling 

equi l ibr ium  equat ions   ex is t   for   h igher  loads t h a n   t h i s .  I n  F ig .  10 it can 

be seen that the  upper  branch  represents  stable  equilibrium,  that  i s  

def lec t ion   increases   wi th   load .  
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Figures 12 and 13 show the  prebuckling  behavior  and  buckling mode of a 

clamped spher ica l  segment wi th   ex te rna l   s t i f f ene r s .  Again, the  prebuckling 

displacements  correspond  to two branches  of the load-deflect ion  curve.   In  

this   case  the  upper   branch i s  unstable .  The she l l   buck le s   i n to  6 

circumferent ia l  waves a t  a load  not fa r  below the  col lapse  load.  

Figures 14 through 18 present   numer ica l   resu l t s   for   eccent r ica l ly  

s t i f f ened   t o ro ida l  segments  (See Fig.  5 f o r  geometry).  In  Fig. 14 are shown 

load-def lec t ion   curves   for   in te rna l ly   s t i f fened   to ro ida l  segments  loaded a t  

the  shear  center,   the  neutral   surface,   and  the  centroids of t h e  s t i f f e n e r s .  

For a l l  three  cases  the collapse  loads are f a i r l y   c l o s e .  

Figures 15 and 16 show the  prebuckling radial displacements   for   external ly  

s t i f f ened   t o ro ida l  segments  loaded  respectively  through the neutral   surface 

and  through  the  centroid of the  s t i f feners .   Shel ls   loaded  through  the 

neut ra l   sur face   t end   to   def lec t  outward near  the edge  and  inward  near  the 

equator.  The large  meridional  bending moment caused  by  loading the s h e l l  

through  the  centroid  of  the  external  st iffeners  forces it t o   d e f l e c t  inward 

near  the  edge  and  outward  near  the  equator. 

Figures 17 and 18 present  prebuckling and buckling  displacements  for  the 

same cases   for  which  prebuckling  data  are  presented  in  Figs.  15 and 16. There 

a r e  two buckling modes  shown i n   F i g .  1.7, one corresponding  to n 10 and  one 

corresponding  to n = 70.  This   par t icu lar   case   exhib i t s  two minima i n   t h e  

curve P versus n .  The minimum a t  n = 10 corresponds  to   buckl ing  in  which the 

primary  cause i s  the  compressive  meridional  stress  resultant N The 

somewhat higher minimum a t  n = 70 corresponds   to   buckl ing   in  which the  primary 

c r  
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Figure 18 shows the prebuckling  and  buckling  displacements  for  the 

ex te rna l ly   s t i f f ened   t o ro ida l  segment loaded  through the cent ro i&of   the  

s t i f f ene r s .  The large  meridional  bending moment thus  produced  causes hoop 

compression t o  develop  near  the  edge,  and this compression  causes  buckling 

i n t o  a high number of   c i rcumferent ia l  waves. As in   the   p rev ious   case ,   th i s   case  

exh ib i t s  two minima i n   t h e  curve  Per  versus n. However, the  minimum at  the higher 

wave number 65 i s  the  lower  of  the two. The corresponding  buckle  pattern 

i s  very   d i f fe ren t  from that f o r  n = 70 shown i n   F i g .  17, because  the 

maximum hoop compression  occurs  near  the  edge rather than a t  the  equator.  

3.4 Shel l s  w i th  Edge Rings 

Bifurcation  buckling  of  eccentrically  st iffened  shells  with edge r ings  

f a l l s  i n t o  two c l a s ses :  If the edge r ings  are   not   very s t i f f ,  the   she l l s  

buckle  almost  inextensionally w i t h  n = 2 a t  loads which can  be many orders  of 

magnitude smaller   than  the  buckl ing  loads  for  clamped s h e l l s .  Cohen (Ref. 21) 

found  such  loads f o r   a x i a l l y  compressed monocoque cy l ind r i ca l   she l l s .  If the 

r ing   s t i f fness   exceeds  some c r i t l ca l   va lue   ( s ee   F ig .  lg), t h e  shel ls   buckle  

with n > 2 a t  loads comparable to   the  buckl ing  loads  for  clamped  edges,  and 

the  buckle   pat tern i s  no longer  inextensional.  

Figure 19 shows the   c r i t i ca l   ax i a l   l oads   fo r   an   i n t e rna l ly   s t i f f ened  5" 

cone  supported  by  edge  rings  of  square  cross-section. The centroid  of the 

rings coincides  with the shear   cen ter   o f   the   she l l  wall. The length  of   the 



c 

cone i s  95 inches  and  the  radius of t h e   p a r a l l e l   c i r c l e  a t  the  mid-length i s  

198 inches.  From Fig.  19 it i s  seen   tha t   she l l s   wi th  edge r ings  

less than 9.4 inches  thick  buckle  with n = 2 a t  loads which  decrease  sharply 

as the   s i ze  of the  r ing  decreases .   For   r ings  larger   than 9.4 inches in 

thickness , the   shel l   buckles   with n = 20 a t  loads   very   near   tha t   for  clamped 

edges. The buckling  load  corresponding  to  simply-supported  edges i s  a l s o  

shown i n   t h e   f i g u r e .  

Figure  20 shows the modal displacements of the  "inextensional"  (n = 2 )  

mode for   r ing   th icknesses  tr of  2.608  and  7.824 inches.  Modal displacement uH 

and v a r e  shown. For tr = 2.608  the  generators  remain  practically undeformed 

during  buckling. The th icker   r ing  tr = 7.824 c lear ly   forces   the   genera tors  

t o  deform during  buckling. 

Figure  21 shows normalized  buckling  loads f o r  ring-supported  conical  shells 

versus   the number of mer id iona l   s ta t ions   in   the   f in i te -d i f fe rence  schzme. 

The loads  are  normalized  by Plimit , the  value that P seems t o  approach as 

the number of meridional   s ta t ions i s  var ied.  For small r ings  it i s  c l e a r   t h a t  

numerical d i f f icu l t ies   occur   wi th   increas ing  numbers of points  before 

convergence  has  been  achieved. It appears  that   the problem es formulated i n  

the   s t ab i l i t y   equa t ions  i s  ill condi t ioned   for   the   case   in  which the  generators 

remain  undeformed (inextensional  buckling)  .For  r ings  with t = 2.608 , 3.912 , 

and  5.216 the   so lu t ion   has   s tab i l ized   before   numer ica l   d i f f icu l t ies   occur .  

r 
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Figure  22 shows buckling  loads  for  r ing-supported  spherical  segments  of 

t he  geometry shown i n   F i g .  1 The "inextensional" mode ( n  = 2)  i s  

antisymmetric  about  the  midlength of the segment; the mode corresponding  to 

b i furca t ion   of  clamped  segments i s  symmetric  about  the  midlength. The curve 

f o r  antisymmetric  buckling (n = 2) crosses  that f o r  symmetric buckling 

(n = 6) a t  values of t which a re   surpr i s ing ly   l a rge .  r 

Figure 23 i s  similar t o   F i g .  21: It shows the  convergence  properties 

of the  "inextensional" (n  = 2)  buckling mode with number of meridional 

s t a t i o n s  on the  spherical  segment.  Again,  convergence  improves as the   r i ng  

s ize   increases .  

For a cy l indr ica l   she l l   the   in f luence   o f  an end r ing  i s  s tud ied   fo r  

the   case   in  which the  inextensional   pat tern i s  suppressed  through  use of  edge 

support .  The r i n g  i s  f ixed  a t  i t s  cent ro id   in   the   ax ia l ,   c i rcumferent ia l ,  

and radial d i rec t ions ,   bu t  i s  f r e e   t o   r o t a t e .  The r e s u l t s   a r e  shown i n   F i g .  24. 

The  somewhat pecul ia r  form of the  curve  emphasizes a phenomenon which i s  

often  overlooked:  there  are two s e t s  of  boundary conditions which e f f ec t   t he  

buckling  load, t h a t  governing  the  axisymmetric  prebuckling  behavior,  and t h a t  

governing  nonsymmetric  buckling.  In  the  present example the  r ing  cross-  

sec t ion  i s  allowed t o   r o t a t e   o n l y .   I f   t h e   s t i f f n e s s  K is defined as the edge 

moment per   uni t   rotat ion  appl ied  by  the  r ing  to   the  shel l ,   then  for   axisymmetr ic  

prebuckling  deformation K = EIx/ r2  , and f o r  harmonic buckling  deformations 

with n waves K,, = (EIx + n GJ)/r2 . I n  this case the bending  s t i f fness  E I x  

i s  approximate ly   equal   to   the   to rs iona l   s t i f fness  GJ, and  the wave number 

n i s  l a rge .  Hence '6 i s  much bigger   than K , which gives rise t o  two regions 

P 
2 

P 
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i n  the  curve of Fig.  24. When t i s  less   than  about  3 inches  the  increase 

i n   c r i t ' i c a l   l o a d   w i t h   r i n g   s i z e  i s  due p r i m a r i l y   t o   t h e   i n c r e a s e   i n   t h e   r i n g  

to r . s iona1   s t i f fnes s ,  which  governs  the  restraint   against  edge r o t a t i o n   i n   t h e  

buckling mode. This  observation i s  supported  by the curve  in   Fig.  24 

labe led  "Membrane Prebuckling  Analysis". The curve  rapidly  approaches an 

asymptote  which  corresponds t o  clamped s h e l l s .  When tr i s  g rea t e r  than 

about 3 inches ,   t he   i nc rease   i n   c r i t i ca l   l oad  w i t h  r ing   s i ze  i s  due pr imar i ly  

t o  the increase in the   r ing  bending  s t i f fness ,  which  governs  the  restraint 

aga ins t  edge rotat ion  in   the  prebuckl ing  phase.   In  comparison t o   t h e   r e s u l t s  

presented  in  Ref.  21  and  22 a very heavy r ing  i s  needed before clamped 

conditions are approached. This  i s  of course  connected w i t h  t h e   f a c t  that 

the  shel l   considered  here  i s  very  short  and has a l a rge   bend ing   s t i f fnes s   i n  

the axial d i r ec t ion .  The va lue   o f   the   c r i t i ca l   load   for   zero   r ing   th ickness  

i s  not   the same as the value for simple  support,  since  "simple  support' '  implies 

no a x i a l   r e s t r a i n t .  The presence of a x i a l   r e s t r a i n t   i n c r e a s e s   t h e   c r i t i c a l  

load from ,3020 t o  4568 l b s l i n .  
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Table l a  Cr i t ica l   Axia l  Load as Function 
of Mesh Size 
(Shells shown i n  Fig.  1) 

10' Cone 

Loaded through  Skin 

Simply  Supporteda 

Externa l   S t i f fen ing  

NUMl3ER OF MERIDIONAL 
INTERVALS 

19 

29 
39 
49 
59 
69 
79 
89 
99 

CRITICAL LOAD 
10-3 per 

4006 
4010 
4013 
401 3 
401 5 
4014 
4041 
4220 
4185 

a Simple  Support''  implies M1 = N1 = u = v = 0 H 
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Table lb Crit ical  Axial Load as Function 
of Mesh Size   (Shel l s  shown i n  Fig. 1) 

- ~ ~ "~ .. ~-~ ~ 

Cylinder 
Clampeda 

External  Stiffening 1 
. ~ .. . ~ 

NUMBER OF MERIDIONAL 
INTERVALS 

(ON HALF IXNGTH) 
_____~ . ~ 

1 5  
17 
20 
21 
23 
25 
27 
28 
29 
30 
31 
33 
35 
37 
40 
45 

- 

CRITICAL LOAD 

Nc r 
" ~~~ ~~~~ ~ 

7742 
7757 
7771 
7774 
7780 
7782 
7788 

7791 
7797 
7788 
7794 
7795 
7801 
7777 
7823 

7788 
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Table 2 Buckling Loads of Stiffened  Cylinders 

cy1 . 
No. 

13 
14 
15 
16 
22 

23 
24 
25 
26 

28 

31 
36 
38 

43 

27 

41 

Theory 
Ref. 11 

Membrane 
Prebt 

Simple 
Support 

28 3 
265 
321 
382 
1.1-7 
124 
246 
22 1 

289 
337 
153 
34 5 
364 
333 
354 
146 

Nonlinear 
:kling ~ 

Experiment 

-___ 

Ref. 11 

185 
206 

268 
99 
96 

230 

204 
160 
244 
234 
117 
228 

256 
231 
297 
150 

1 
1 

a Buckling  loads  in   lbs/ in  
Numbers i n  parens   ind ica te   c r i t i ca l  wave numbers. 
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Table 3 Buckling of Fiber  Reinforced 
Cylinders 

- - "" 
~~ 

No. 
. 

1 

2 

3 
4 
3 
4 
6a 
7a 
9 
1 

2 

3 
4 

Membrane 
Prek 

Simple 
Support 
. . ~~~~ 

710 
1035 
1203 
1289 
469 
473 
330 
318 
248 
726 
726 
726 
726 

ckl ing 

Clamped 

711 
1045 
1211 

1293 
469 
473 
3 30 
318 
248 
728 
728 
728 
728 

~ " 

Experiment 

598 
765 
850 
775 
3 37 
373 
272 
335 
200 

609 
622 
629 
650 

I 

a Buckling  loads i n   l b s / i n  
Numbers i n  parens  indicate number of c i rcumferent ia l  waves i n  
buckle   pat tern 

27 



Table 4 Buckling Loads (millions of lbs.) for Eccentr ical ly  
St i f fened Aluminum Cylindrical  and  Conical  Shells 

BOUNDARY INTERNAL STIFFENING 

 CONDITIO^ 
CODE NO 10" Cone 5" Cone CYL 

1 1 A00 (18) 1.650  (18) 1.670 (18)b Nonlinear 
Pre- 

Analysis 
buckling 

1.200 (19) 1.240 (19) 1.250 (20) 2 

3 3.480  (14) 3.540  (14) 3.580  (14) 
4 , 4.330 (19) 4.480 ( 2 0 )  4,540 (20) 

EXTERNAL STIFFENING 

1,2,3 1 ..440 (18) 1.485  (18) 1.520 (18) ' Membrane 
Pre- 3.820 (21) , 3.670  (21) ~ 

4 
! 

3.620 (21) 

!LI1 I 

%oundary Condition Code: Axial load  applied a t  
1. neutral   surface 
2. shear  center 
3. centroid of s t i f f e n e r  
4. s h e l l  clamped 

i 
2.700 (21) 2.640 (21) 
6.060  (22) 5.920 (22) u 

10" Cone 

3.620 (10) 
4.. 160 ( 17 ) 
1.200 (26) 
9.160 (1-5) 

2.570 (20) 
5.7'10 (22) 

bNumbers i n  parens  indicate number of circumferential  waves in  buckle  pattern 



BOUNDARY 
CONDITION 
CODE NO.a 

31- 
'urcation 

r: 
:ollapse 1: 

Table 5 Buckling Loads ( l b / i n  a t  equator )   for  
Eccent r ica l ly   S t i f fened  Aluminum 
Spherical  and  Toroidal  Segnents 

%oundary Condition Code : Axial load  appl ied a t  
1. neutral   surface 
2. shear   cen ter  
3 .  cent ro id   o f   s t i f fener  
4. s h e l l  clamped 

bNumbers in parens  indicate  number of c i rcumferent ia l  waves in   buckle   pa t te rn .  
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y Shear  center 

t = 0 .163  in. 

R = 198 in. 

Section AA 

Fig. P Geometry of cylinders,  cones,  spherical  segments, and toroidal  segments 
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7860 
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P; 
U 7780 
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774b  

7700 
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+ +  
t+ 

Clamped cylinder 
external  stiffening 

+ 

+ +  
t 

+ 
t 

. . I  I 1 I 
10 2 F - ~  ~~ 30 40 " G 

~~~ - 

NUMBER OF INTERVALS 

Fig. 2 Critical  Axial Load as function of mesh  size for  cylinder shown in Fig. 1 
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. ..., I .  

Ncr = 1365 lb/in 

Internally  stiffened 
cylinder  loaded at 
neutral  surface 

: I . , :  f 
"-m- I _I. . . - T " . . .  

I . *  I , .  
. ! '  ! 

ARC LENGTH FROM CENTER - (in.)  

Fig. 3 Prebuckling and buckling  displacements of an  internally  stiffened 
simply  supported  cylinder 
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ARC LENGTH FROM CENTER - (in.) 
i 
50 

Fig. 4 Prebuckling and buckling displacements of  an internally  stiffened 
simply supported cylinder loaded at the centroids of the stiffeners 
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MERIDONAL DISTANCE FROM SMALL END 

Fig. 5 Prebuckling  and  buckling  displacements of simply-supported and clamped, 
internally  stiffened,  5-deg  cones loaded in axial  compression  through the 
shear  center 
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w 
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Upper branch 

0"""- 

Lower branc 

Bifurcation buckling (n = 8) 

Internally stiffened  spherical 
segments loaded through shear  center 

Cl1  = 2.504 x 10 6 Ib/in. 

.. . .1 . .. . . I" I 
0.4 0.8 ; 1.2 2.8 3.2 3 

AXIAL DISPLACEMENT (in.) 

Fig. 6 Prebuckling  load-deflection  curve  for an internally  stiffened,  simply supported 
spherical  segment loaded in axial  compression through the shear  center 
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Externally  stiffened  spherical  segment 
loaded through centroids of stiffeners 

Fig. 7 Prebuckling load-deflection  curve  for an externally  stiffened,  simply supported 
spherical  segment loaded in axial  compression through the centroids of the 
stiffeners 
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Upper branch 
- Lower branch 

Internally 
stiffened 
spherical 
segment 

eg = 0 

Fig, 8 Prebuckling  displacements of an internally  stiffened,  simply  supported 
spherical  segment  loaded in axial compression through the shear  center 
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Fig. 9 Buckling  mode  shape for internally  stiffened  spherical  segment loaded in 
axial compression  through  the  shear  center 
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\ ---- Upper branch ' I  1.400 
\ Lower branch . i 
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-A- 4 \ \ 

.. . - - 

\ \  

"Y 
Fig. 10 Prebuckling displacements of an internally  stiffened spherical  segment 

loaded in axial  compression and clamped at the edges 
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.. . . . ... __ - . . "_ . - ... 

! 

Fig. 11 Prebuckling and  buckling  displacements of an  internally  stiffened  spherical 
segment  loaded in axial  compression and clamped at the  edges 
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P/2rC11 = 0 .87  Externally stiffenec' 
clamped spherical 

Upper branch 
b w e r  branch 

Fig. 12 Prebuckling displacements of an externally  stiffened  spherical  segment 
loaded in  axial  compression and clamped at the edges 
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Fig. 13 Prebuckling and buckling  displacements of an externally  stiffened  spherical 
segment loaded  in  axial  compression and clamped at the  edges 
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ad applied at shear  center 
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Internally  stiffened 
toroidal  segments 

* Bifurcation  buckling 
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8 

Fig. 14 Load-deflection  curves  for  axially  compressed,  simply supported 
toroidal  segments 
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Externally  stiffened 
toroidal  segment 
loaded at neutral 
surface 

Fig. 15 Rebuckling  displacements of externally  stiffened,  simply supported 
toroidal  segments loaded in axial  compression at the neutral  surface 
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~ ~~ ~~~~ ~ ~ 

Externally  stiffened 
toroidal  segment 
loaded through 
centroids of stiffeners 

D 

Fig. 16 Prebuckling displacements of externally  stiffened,  simply supported 
toroidal  segments loaded in axial  compression through the centroids 
of  the stiffeners 
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Fig. 1 7  Rebuckling and buckling  displacements and prebuckling  circumferential 
stress resultant  for  an  externally  stiffened  simply  supported  toroidal 
segment loaded in axial compression at the  neutral  surface 
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Fig. 18 Prebuckling and buckling displacements and prebuckling stress 
resultants  for an externally  stiffened,  simply supported toroidal 
segment loaded in axial  compression through the centroids of the 
stiffeners 
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RING THICKNESS (in.) 

Fig. 19 Critical  axial load as a function of ring  thickness for cones supported at 
the edges by rings of square  cross  section 
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Fig. 20 Modal displacements  for ring-supported,  internally  stiffened  5-deg cones 
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Internally  stiffened 
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NUMBER OF MERIDIONAL  STATIONS 

Fig.  21  Critical axial load as a function of number of mesh points fo r  ring-supported 
internally  stiffened 5-de; 0 cones 
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Fig. 22 Critical axial load as a  function of ring  thickness  for  internally  stif€ened 
spherical  segments  supported at the  edges by rings of square  cross  section 
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Fig. 23 Critical  axial load as  a function of number of mesh points for  ring-supported 
spherical  segments 
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Fig. 24 Influence of ring  size on the buckling  load for  cylindrical  shells 
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